Sejak zaman purbakala, orang telah mencoba untuk mengerti sifat dari benda: mengapa objek yang tidak ditopang jatuh ke tanah, mengapa material yang berbeda memiliki properti yang berbeda, dan seterusnya. Lainnya adalah sifat dari jagad raya, seperti bentuk Bumi dan sifat dari objek celestial seperti Matahari dan Bulan.

Beberapa teori diusulkan dan banyak yang salah. Teori tersebut banyak tergantung dari istilah filosofi, dan tidak pernah dipastikan oleh eksperimen sistematik seperti yang populer sekarang ini. Ada pengecualian dan anakronisme: contohnya, pemikir Yunani Archimedes menurunkan banyak deskripsi kuantitatif yang benar dari mekanik dan hidrostatik.

Pada awal abad 17, Galileo membuka penggunaan eksperimen untuk memastikan kebenaran teori fisika, yang merupakan kunci dari metode sains. Galileo memformulasikan dan berhasil mengetes beberapa hasil dari dinamika mekanik, terutama Hukum Inert. Pada 1687, Isaac Newton menerbitkan Filosofi Natural Prinsip Matematika, memberikan penjelasan yang jelas dan teori fisika yang sukses: Hukum gerak Newton, yang merupakan sumber dari mekanika klasik; dan Hukum Gravitasi Newton, yang menjelaskan gaya dasar gravitasi. Kedua teori ini cocok dalam eksperimen. Prinsipia juga memasukan beberapa teori dalam dinamika fluid. Mekanika klasik dikembangkan besar-besaran oleh Joseph-Louis de Lagrange, William Rowan Hamilton, dan lainnya, yang menciptakan formula, prinsip, dan hasil baru. Hukum Gravitas memulai bidang astrofisika, yang menggambarkan fenomena astronomi menggunakan teori fisika.

Dari sejak abad 18 dan seterusnya, termodinamika dikembangkan oleh Robert Boyle, Thomas Young, dan banyak lainnya. Pada 1733, Daniel Bernoulli menggunakan argumen statistika dalam mekanika klasik untuk menurunkan hasil termodinamika, memulai bidang mekanika statistik. Pada 1798, Benjamin Thompson mempertunjukkan konversi kerja mekanika ke dalam panas, dan pada1847 James Joule menyatakan hukum konservasi energi, dalam bentuk panasa juga dalam energi mekanika.

Sifat listrik dan magnetisme dipelajari oleh Michael Faraday, George Ohm, dan lainnya. Pada 1855, James Clerk Maxwell menyatukan kedua fenomena menjadi satu teori elektromagnetisme, dijelaskan oleh persamaan Maxwell. Perkiraan dari teori ini adalah cahaya adalah gelombang elektromagnetik.

Fisika merupakan ilmu yang mempelajari materi dan interaksinya. Banyak konsep-konsep fisika yang bisa menjelaskan fenomena-fenomena di alam. Salah satunya penerapan konsep impuls dan momentum. Impuls adalah gaya yang bekerja pada benda dalam waktu yang relatif singkat, sedangkan momentum merupakan ukuran kesulitan untuk memberhentikan (mendiamkan) benda. Impuls dipengaruhi oleh gaya yang bekerja pada benda dalam selang waktu tertentu sedangkan momentum dipengaruhi oleh massa benda dan kecepatan benda tersebut. Berikut ini disajikan beberapa contoh penerapan konsep impuls dan momentum dalam kehidupan sehari-hari:

1. Karateka
Apakah anda seorang karateka atau penggemar film action? Jika kita perhatikan karateka setelah memukul lawannya dengan cepat akan menarik tangannya. Ini dilakukan agar waktu sentuh antara tangan dan bagian tubuh musuh relatif singkat. Hal ini berakibat musuh akan menerima gaya lebih besar. Semakin singkat waktu sentuh, maka gaya akan semakin besar.

2. Mobil
Ketika sebuah mobil tertabrak, mobil akan penyok. Penggemudi yang selamat akan pergi ke bengkel untuk ketok magic. Lho kok jadi ngomongin ketok magic ya… wajah saya aja ya, yang diketok magic supaya lebih halus sperti primus hehehe. Ok cukup ketok magicnya. Mobil didesain mudah penyok dengan tujuan memperbesar waktu sentuh pada saat tertabrak. Waktu sentuh yang lama menyebabkan gaya yang diterima mobil atau pengemudi lebih kecil dan diharapkan keselamatan penggemudi lebih terjamin.

3. Balon udara pada mobil dan sabuk pengaman
Desain mobil yang mudah penyok tidak cukup untuk menjamin keselamatan pengemudi pada saat tetabrak. Benturan yang keras penggemudi dengan bagian dalam mobil dapat membahayakan keselamatan pengemudi. Untuk meminimalisir resiko kecelakaan tersebut, pabrikan mobil ternama menydiakan balon udara di dalam mobil (biasanya di bawah setir), wah bisa terbang dong (guyon….). Ketika terjadi kecelakaan pengemudi akan menekan tombol dan balon udara akan mengembang, sehingga waktu sentuh antara kepala atau bagian tubuh yang lain lebih lama dan gaya yang diterima lebih kecil. Sabuk pengaman juga didesain untuk mengurangi dampak kecelakaan. Sabuk pengaman didesain elastis.. tis… tis….

4. Sarung Tinju
Chris John seorang petinju juara dunia asal Indonesia (hebat ya) pada saat bertinju menggunakan sarung tinju, ya iyalah masa sarung yang kupakai waktu habis di sunat dulu:)
Sarung tinju yang dipakai oleh para petinju ini berfungsi untuk memperlama bekerjanya gaya impuls ketika memukul lawannya, pukulan tersebut memiliki waktu kontak yang lebih lama dibandingkan memukul tanpa sarung tinju. Karena waktu kontak lebih lama, maka gaya yang bekerja juga semakin kecil sehingga sakit terkena pukulan bisa dikurangi.

5. Palu
Kepala palu dibuat dari bahan yang keras misalnya besi atau baja. Kenapa tidak dibuat dari kayu atau bambu ya? Kan lebih mudah mendapatkan kayu dan bambu, nggak mahal lagi (hemat atau pelit kambuh!!!) Palu dibuat dengan bahan yang keras agar selang waktu kontak menjadi lebih singkat, sehingga gaya yang dihassilkan lebih besar. Jika gaya impuls besar maka paku yang dipukul dengan palu akan tertancap lebih dalam.

6. Matras
Waktu pelajaran olahraga di sekolah dulu (sambil membayangkan ni…) guruku akan mengambil nilai lompat tinggi. Galah yang dipasang horizontal nggak terlalu tinggi sekitar 1-1,2 meter terus di bawah galah diletakan matras. Aku bersiap di garis start dan berlari kemudian melompat seperti jaguar alaaahh jaguar atau jagoan neon ni. Aku berhasil melompati galah tersebut dan mendarat dengan tawaan dan teriakan teman-teman. Pada saat mendarat aku terpeleset dan bokongku menerpa (lho kok menerpa nggak apa-apa biar agak romantis) matras. Saat kuliah dan belajar tentang impuls apa jadinya ya kalo pada saat aku melompat dibawahnya tidak ada matras.
Matras dimanfaatkan untuk memperlambat waktu kontak. Waktu kontak yang relatif lebih lama menyebabkan gaya menjadi lebih kecil sehingga tubuh kita tidak terasa sakit pada saat jatuh atau dibanting di atas matras.

Riset fisika mengalami kemajuan konstan dalam banyak bidang, dan masih akan tetap begitu jauh di masa depan.

Dalam fisika benda kondensi, masalah teoritis tak terpecahkan terbesar adalah penjelasan superkonduktivitas suhu-tinggi. Banyak usaha dilakukan untuk membuat spintronik dan komputer kuantumbekerja.

Dalam fisika partikel, potongan pertama dari bukti eksperimen untuk fisika di luar Model Standar telah mulai menghasilkan. Yang paling terkenal adalah penunjukan bahwa neutrino memiliki massabukan-nol. Hasil eksperimen ini nampaknya telah menyelesaikan masalah solar neutrino yang telah berdiri-lama dalam fisika matahari. Fisika neutrino besar merupakan area riset eksperimen dan teori yang aktif. Dalam beberapa tahun ke depan, pemercepat partikel akan mulai meneliti skala energi dalam jangkauan TeV, yang di mana para eksperimentalis berharap untuk menemukan bukti untukHiggs boson dan partikel supersimetri.

Para teori juga mencoba untuk menyatikan mekanika kuantum dan relativitas umum menjadi satu teori gravitasi kuantum, sebuah program yang telah berjalan selama setengah abad, dan masih belum menghasilkan buah. Kandidat atas berikutnya adalah Teori-M, teori superstring, dan gravitasi kuantum loop.

Banyak fenomena astronomikal dan kosmologikal belum dijelaskan secara memuaskan, termasuk keberadaan sinar kosmik energi ultra-tinggi, asimetri baryon, pemercepatan alam semesta danpercepatan putaran anomali galaksi.

Meskipun banyak kemajuan telah dibuat dalam energi-tinggi, kuantum, dan fisika astronomikal, banyak fenomena sehari-hari lainnya, menyangkut sistem kompleks, chaos, atau turbulens masih dimengerti sedikit saja. Masalah rumit yang sepertinya dapat dipecahkan oleh aplikasi pandai dari dinamika dan mekanika, seperti pembentukan tumpukan pasir, “node” dalam air “trickling”, teori katastrof, atau pengurutan-sendiri dalam koleksi heterogen yang bergetar masih tak terpecahkan. Fenomena rumit ini telah menerima perhatian yang semakin banyak sejak 1970-an untuk beberapa alasan, tidak lain dikarenakan kurangnya metode matematika modern dan komputer yang dapat menghitung sistem kompleks untuk dapat dimodelkan dengan cara baru. Hubungan antar disiplin dari fisika kompleks juga telah meningkat, seperti dalam pelajaran turbulens dalam aerodinamika atau pengamatan pola pembentukan dalam sistem biologi.